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LETTER TO THE EDITOR 

The modified resolvent for the one-dimensional 
Schrodinger operator with a reflectionless potential and 
Green functions in multidimensions 

Serguey Lebletf and Anatolij Zaitsevt 
t Politechnika Gdariska Wydzial Fizyki Technicznej i Matemtyki Stosowanej ul. Narutowiua 
11\12 80-952 Gdatisk-Wneszcz. Poland 
t Theoretical Physics Department, Kaliningrad State University, ANevsky Street 14, Kalininpad 
236041, Russia 

Received 13 lune 1995 

Abstract. The representarion of the resolvent of the onedimensional Schrodinger operator 
with a reflectionless potential dces not contain the integral term. It is obtained via lost function 
simple poles decomposition within the formula for the Green function. As a corollary we have 
a new expression for the reflectionless potmtial with a free parameter. The results allow the 
&en functions for a wide class of multidimensional differential equations with a coefficient 
proponional to the potential to be obtained. Examples for dipsion and wave equations ?.re 
given. 

The integral term in the kernel of the resolvent for the Schrodinger operator on one' x axis 

L = -d2/dx2 + U(X) /U+ Ixl)lu(x)ldx 4 CO (1) 

by the eigenfunctions of the discrete and continuous spectra is simplified in the case of 
the reflectionless potential u ( x )  but does not vanish. In.this letter we present an explicit 
representation for the kernel that contains only the sum over the discrete spectrum points 
without the integral term and demonstrate the use of such formalism. The method of 
construction goes up to the factorization technique, see, for example the review [I]. 

Let the potential u ( x )  in (1) be the reflectionless one and have n hounded states. 
Denoting Am = -bi, bm z 0, m = I, ... , n  for the points of the discrete spectrum 
and the corresponding eigenfunctions @,,,(x), that we normalize as 

Iim @,(x)eb"" = 1. 
x-m 

Let the Jost function @(x, k) he fixed by the condition 
lim @(x,  k)e-*' = 1. 

It is clear that @,(x) = $(x, ib,) and the Jost function in the case of n-level reflectionless 
potential allows the representation [2] 

x-m 

" 
@(x;k)=e'kXR(x,k) R(x,k) =P,(x,k) /n(k+ib,)  (2) 

m=i 

5 On leave of absence from Kaliningmd University. 
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where Pn(x, k) is a polynomial in k of nth power with the senior term k" so that 
lim R(x ,  k), = 1. 

k-w 

The decomposition of R ( x , k )  in the simple decimals has the form 121 
n 

R ( x ,  k) = 1 - i c p,,,@,,,(x)e-bq'/(k + ib,,,) (3) 
m=l 

where pm = [ J _ " , @ ~ ( x ) d x ] - ' .  The simplest derivation of the representation (2) may be 
obtained by the Darboux transformation technique [3]. The resolvent kernel G(x,xo, k) of 
the operator L satisfies the equation 

(L-kZ)G(x ,xo ,k )=S(~-~o)  (4) 
and is expressed at Im k > 0 by means of the Jost function @ ( x ,  k)  in the following way 

From (2H5) it follows that 

(6) 
where S(x,  xo, k) is a rational function of k, that is symmetrical in x ,  xo and has simple 
poles at the points k = fib,,,, m = 1, . . . , n, and limk,, S(x,  XO. k) = 1. Using (3) we get 

~. 
'G(x, xo. k) = -eikIx-xolS(x, xo, k)/2ik 

res S(x,xo,k) = ~iPm@,,,(X)~,,,((xo)exp(bmIx -xol). 
k=Yb. 

Now we can obtain the resulting formula for the kernel 

G(x ,  xg)=-exp(iklx -xol)/2ik -cp,,,@,,,(x)@,,,(xo)[exp(i(k - i6,)lx - x o l ) / ( k  - ib,,,) 

(7) 
Let us give two consequences of the representation (7). After the straight substitution of 
(7) in equation (4) we see that the pole terms disappear and the remaining terms give the 
identity 

n 

m-1 

- exp(i(k + ib,)lx - xol) / (k + ibm)]/2k. 

n 

U ( X )  = -4d/k sinh[bm(x - x~)l@m(x)@m(x~) (8) 
m= I 

which in the particular case x = xg gives the well known representation of a reflectionless 
potential by the squares of the eigenfunctions. If one introduces as in (1) the function 
w ( x )  ='J U@) dE then the symmetric relation is obtained by integration of (8) with respect 
to x :  

n ~~ 

4 ~ )  - 4 ~ )  =4Cpmsinh[bm(x - ~ ) l @ m ( x ) @ m ( ~ ) .  
m=l 

Using the derived relations (7). (8) one can find Green functions for a wide class of 
multidimensional differential equations. Let Lo be a linear differential operator in a new 
variable y with constant coefficients and let E(x ,  y )  be the fundamental function of the 
operator LO - a2/ax2, i.e. 

(L,, - a Z / a X Z ) m ,  y )  = six, y )  (9) 

( 10) 

then for the Green function for the operator L + Lo such that 

(Lo + L)G(x, Y ,  X O ,  YO) F s(x  - xo. Y - YO) 
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the following expression is valid 
n 

G ( ~ , Y , ~ o , Y o ) =  E ( ~ - ~ o , Y  - ~ o ) + C p m ~ m ( x ) ~ m . , ( x o ) E m ( x - x ~ , ~  -YO) (11) 
m=l 

where Em(x,  y )  is some appropriate solution of the equation 

aE&, y ) / a x  = -2sinh(b,x)E(x, , ,  y ) .  (12) 
Formula (11) is tested by the stmight substitution in equation (11) using the equalities 

(7), (9, (lo), and (12). 

Example I .  The Green function of the operator 8/67 + uL, v > 0 is 

G ( X ,  t ,  xo, to) = e(t -to) exp[-(x - ~ ~ ) ~ / 4 u ( t  - to)l /~&v(t - to) 1 
" 

+Cpmrlr , (x )~m(xo)exp( -ub~( t~- to) )[Er f ( (x  - X O  +2vbm(t - t o ) )  

/ 2 f i ( t  - to)) - 

m=1 

- xo - Zvbm(t - t0)/2fi(f - to))] /2. 1 
Example 2 .  The Green function of the operator c-'aZ/at2 + L is 

G(x ,  t ,  XO. to)  = cO(c(t - to) - IX -101) 1/2 + pm~m(x)~mm(xo)[cosh(cb,(t  -to)) I m:, 

1 -cosh(bm(x -~o))l/b, . 
Both representations are obtained by means of well known fundamental solutions for o n e  
dimensional thennoconductivity and wave operators. 

The given representations for Green functions may be useful for the description of the 
mass and heat diffusion as well as for the wave propagation in inhomogeneous medium. The 
stratification of the considered form may be induced by soliton propagation. The technique 
is obviously applicable to other operators with factorizable L with the potentials that go 
to constants at infinities 141 (for factorization in multidimensions see [5 ] )  but we restrict 
ourselves in this letter assuming that the most interesting point in our work is connected with 
representation (8) and generalization of higher dimension. We also hope for applications 
of our results in the resolvent 'approach in nonlinear theory [6] and in quantum models in 
one-loop approximation 13.71 where exact solutions enter the temperature Green function 
equation [SI. 

One of us (SL) would like to thank the Theoretical Physics Department at the University 
of Salamanca for its kind hospitality and J Cervero and J Mateos for fruitful discussions 
(especially J Cervero, who pointed out [4]). 
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